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‘De Rerum Pareti’: on Power Laws  
and Organisation Science  

 

Pierpaolo Andriani 
 

Index: 1. Introduction - 2. A look at the diffusion of the paretian distribution - 3. What 
a power law is - 4. Three classes of power law theories - 4.1 Fractals - 4.2 Spatio-
structural properties of systems: the new science of networks - 4.3 Self-organized 
criticality - 5. Indipendence versus interdipendence - 5.1. Average instead of tails - 
5.2 Statistics: obscuring rather than clarifying? - 5.3 Different kind of statistics? - 6. 
Conclusions - References 

 

1 Introduction  
 

Vilfredo Pareto can be credited with discovering one of the fundamental laws that 
regulates network-based complex systems. From the distribution of wealth to the 
size of cities, from the extinction of species to the distribution of matter in the 
universe, a seemingly mysterious law seems to dominate disparate networks. The 
first evidence of this distribution comes from the studies of wealth distribution in 
Western economies, carried out by Pareto at the end of the 19th century (Pareto, 
1897). Pareto discovered that wealth distribution is inherently unfair. Large part of 
wealth is concentrated in a handful of people. At the opposite end of the spectrum, 
most people end up dividing a decreasing fraction of the total pie. Wealth seems to 
attract more wealth with a force proportional to its amount, in a way reminiscent of 
the biblical Matthew effect “…unto every one which hath shall be given … “(Luke). 
Commonly known as the 80/20 rule, this distribution has turned out to be as 
ubiquitous as mysterious. There is virtually no sector in natural and social sciences 
in which the Paretian distribution doesn’t play a central role.  

I will in the following present some historical evidence about the emergence of 
the Paretian distribution in several fields. Then I will formally introduce the concept 
and characteristics of a Paretian (usually known as power law distribution). I will 
propose a unifying scheme for the disparate theories and models that are based on 
power laws. In the final part I will discuss (summarily) some implications, especially 
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regarding the importance of extreme events and the type of approach we need to 
deal with extremes.  

 

2. A look at the diffusion of the paretian distribution  
 

The road opened by Pareto laid dormant until the second decade of the new 
century when Auerbach (Auerbach, 1913) observed that the distribution of sizes of 
cities obeyed a Paretian distribution: if one ranks cities in terms of number of 
inhabitants (size), one discovers that there is a fixed ratio between the number of 
cities with different size. This ratio holds true irrespective of time and place (although 
it may slightly change in different countries). Moreover, plotting (on a double 
logarithm graph) the rank of American cities against population, the graph shows a 
straight line with a slope of almost exactly -1. This means that for every city with 1 
million inhabitants there are two with half a million and so on. A look at Figure 1 
shows that this is a highly skewed distribution with most of the events packing 
around small values of the x-axis and very few points at the other extreme. In the 
middle the distribution is decreasing. The cities with an unusual large number of 
inhabitants generate a long tail in the distribution, which, as we shall see later, is the 
cause of a very interesting dynamics, whose meaning is still the object of a heated 
debate. With time it came to be realized that this behaviour (usually attributed to Zipf 
(Zipf, 1949)) is far from being isolated. This regularity is persistent in time and space 
(Krugman, 1996) and explaining it has been a challenge for economists and 
geographers for a long time. As Krugman puts it: we are unused to seeing 
regularities this exact in economics – it is so exact that I find it spooky (Krugman, 
1996: 40).  

In biology Yule (Yule, 1925), refining results obtained by Willis (Willis, 1922), 
observed that the number of species per genus follows a power law. Yule was 
expecting a distribution dominated by a typical scale. He found, instead, that species 
per genus distribution, likewise cities and wealth, follow a highly asymmetric 
distribution, that is, a Paretian distribution.   

In 1916, Estoup (Estoup, 1916) and later Zipf (Zipf, 1949) found that a power law 
applies to language (word frequencies). Casti (Casti, 1994) shows that, whereas a 
monkey at a typewriter generates different words of equal length at equal 
probability, word usage in the English follows a perfect power law—if word usage 
frequencies and rank-order are plotted on double-log scales, the words, the, of, and,
to, I, or, say, really, quality diminish at a perfect –1 slope.  
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Figure 1: Auerbach Law (from (West et al., 1995) 
 

One of the most interesting development for power law distribution comes from 
an unlikely source: seismology. Richter and Gutenberg (Gutenberg et al., 1944), 
generalising a previous result by Omori (Omori, 1895), published a famous paper in 
which they present what is still today one of most compelling evidence for the 
existence and relevance of power laws: the distribution linking frequency and 
magnitudes of earthquakes.  

In finance and economics, power laws were first noted by Pareto (Pareto, 1897). 
Power laws were ‘rediscovered’ in the 20th century by Mandelbrot (Mandelbrot, 
1963) and spurred a wave of interest in finance (Fama, 1965); (Montroll et al., 1984). 
However, the rise of the “standard” model of efficient markets (signified by Portfolio 
Theory (Markowitz, 1959), the Capital Asset Pricing Model (Sharpe, 1964), and the 
Black-Scholes (Black et al., 1973) Option Pricing Theory) sent power law models 
into obscurity from which they emerged in the 90s as a reaction to the occurrence of 
catastrophic events, such as the 87 financial market crash, that the standard model 
finds difficult to explain (Bouchard et al., 1998). The case against the “standard” 
model is set by Mandelbrot (Mandelbrot et al., 2004) with a simple observation:  
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…By the conventional wisdom, August 1998 simply should never have 
happened…. The standard theories…would estimate the odds of that final, August 
31, collapse, at one in 20 million—an event that, if you traded daily for nearly 
100,000 years, you would not expect to see even once. The odds of getting three 
such declines in the same month were even more minute: about one in 500 billion 
(p. 4)…. [An] index swing of more than 7 percent should come once every 300,000 
years; in fact, the twentieth century saw forty-eight such days (p. 13).  

The reason for the discrepancy between reality and theory lies in the crucial 
assumption by Finance Orthodoxy: variations in price are statistically independent, 
and normally distributed. These assumptions allow the use of calculus, modern 
probability and statistical theory, and give rise to a vast edifice of extreme 
mathematical sophistication. However, they conflict with reality. The price of virtually 
any stock or commodity exhibits a punctuated equilibrium behavior, in which chaotic 
and turbulent periods alternate with stable ones (Mandelbrot, 1963); (Fama, 1965); 
(Bouchard et al., 1998); (Moss, 2002). Punctuated equilibria indicates that the 
system is self-critically organised, that is, the system exhibits both long-range and 
long-term correlations. Price variations are neither independent nor normally 
distributed. As we shall see later in section, self-critically organised systems are 
based on power laws.  

 
Another interesting and recent example of power laws in the econosphere 

appears in the book, Hollywood Economics, by De Vany (De Vany, 2004). 
Throughout the book he shows that the occurrence of unprofitable and highly 
profitable movies are Pareto distributed. He demonstrates that ‘fat tails’ dominate 
the movie industry. Fat tails are generated by extreme events that should be 
negligeable in a Gaussian world. The consequence of the Paretian ‘obedience’ is 
the inherent chaotic behaviour of the industry. Movies don’t seem to show any 
significant correlation between any of the variables used to predict final profits. 
Budget is uncorrelated with earnings, the star system gives no indication about final 
success. Forecasting is an empty word. The movie industry is chaotic. The only 
recognisable pattern, writes De Vany, is the universal attractor of the Paretian 
distribution. 

The movie industry is not the only information-based industry dominated by 
extreme events. Pharma companies seem to depend on a surprising small number 
of blockbuster drugs (Viagra for Pfizer, Zantac for Glaxo, etc.). Though we don’t 
have information, it wouldn’t come as a surprise that the distribution of profits in the 
pharma sector follows a power law and the industry were similar to Hollywood. A 
similar pattern seems common in the publishing industry too 

Just a word of caution. Not all power laws are Paretian. For instance, the 
emergence of power laws in biology is related to scaling. Since the time of Galileo, it 
was known that the change of a property, say metabolism, is related to the change 
in another, say mass, according to a simple formula. D’Arcy Thompson (D'Arcy 
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Thompson, 1917) discusses scaling extensively in his 1917 masterpiece. In 1932 
Kleiber (Kleiber, 1932) published his general power law result that connects the 
scaling of mass with metabolism via a ¾ exponent. This is remarkable as it was 
thought that metabolism had to scale with volume, therefore with a 1/3 exponent. 
The reason for this behaviour is related to a fractal branching pattern of distribution 
of resources. The explanatory and predictive power of the ¾ relationship is 
astonishing. It applies across an astonishing 27 orders of magnitudes, from 
submolecular entities to whales (West et al., 2004). It is important to remark that 
allometric power laws represent a different and non Paretian type of power law. 
Allometric laws describe reciprocal change in conjugated variables. The fact that the 
variables are connected by a third invariable quantity, the slope of the power law 
equation, point to the presence of a conservation principle or fundamental 
constraint, of which the allometric power law represents the signature.  Paretian 
power laws instead are concerned with distribution of events, that is, with statistics.  

 

3 What a power law is  
 

What Pareto discovered is a class of phenomena, where the ratio between the 
smallest and the largest event is gigantic. For instance, the ratio between the largest 
and the smallest urban agglomerate (from village to city) is more than 150.000 
(Newman, 2005). The ratio between the smallest earthquake and the largest one is 
a staggering nine order of magnitude. We get a similar ratio between the largest and 
the smallest event in economics (largest vs smallest firm, order, profit, wealth, etc.). 
By contrast, the ratio of the heights of the shortest against the tallest human 
individual is 4.18 (Newman, 2005). Why are the differences between the extremes in 
the examples above so distinctly different? What type of dynamical forces underlies 
the first set of examples (cities, earthquakes and wealth - which we call the 
unbounded class)? Does it differ from the second set (heights of humans – which 
we call the constrained class)? If we plot the frequency against the size of events 
relative to the two classes, we observe two distinct and completely different patterns. 
In the case of the constrained class, the events are distributed in a bell shaped 
fashion, commonly known as the Gaussian or normal distribution. Most of the events 
will pack around the most common value, the mode, which, in a normal distribution, 
coincides with mean and median. All the others form the tails of the distribution and 
rapidly decay around the central value. This distribution is completely described by 
means of two parameters only: mean and variance. Though the normal distribution 
is only one of the statistical distributions (the other common ones are the binomial 
and the lognormal), it has rapidly become the dominant one. The great 
mathematician Poincare’ so commented about it at the end of the 19th century: “All 
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the world believes it firmly, because the mathematicians imagine that it is a fact of 
observation and the observers that it is a theorem of mathematics” (cited in (West et 
al., 1995): 83).  

The events of the ‘unconstrained’ class instead follow a completely different 
pattern: the plot of events frequency against events size (or rank) reveals a right 
skewed decreasing distribution with a very long tail. I will illustrate this point by using 
the example of the Italian industrial districts1. In Figure 2 I show frequency vs size of 
firms in twenty travel-to-work areas in Italy that, according to the Sforzi-Istat 
taxonomy (Cannari et al., 2000), are classified as industrial districts. One can 
observe that most firms are small, but that there is an extremely long tail that makes 
the data representation very difficult on a linear scale. A double logarithmic 
transformation (Figure ) shows an interesting feature of a power law distribution: it 
follows a straight line on a double log graph2. The type of power law we frequently 
find in nature and societies is called inverse power law with negative exponent 
between 1 and 3 (Newman, 2005). It indicates a decreasing distribution with a 
decreasing density of events. The low density of events in the right-hand part of the 
x-axis generates the noise seen in the tail of Figure 3. This is due to the fact that the 
bins in the extreme part of the tail contain only a few events, which causes 
significant fluctuations in adjacent bins. In order to improve resolution in the most 
important part of the graph, that is the tail, one can use a technique known as 
 
1The agglomerations we consider are the so-called travel-to-work areas (TWAs), known in 
Italy as sistemi locali del lavoro. The dabaset is based on data from ISTAT and Cerved. 
TWAs are relatively self-contained economic and social units, calculated by dividing a national 
territory into units that maximize internal home-to-work commuting and minimize inter-TWA 
commuting ISTAT INdS. 1997. I sistemi locali del lavoro. ISTAT: Roma. The basic idea is that 
the higher the percentage of internal home-to-work commuting taking place within the 
boundaries of an area, the higher the chance of capturing within the area some territorially-
specific social and industrial aspects. TWAs represent an algorithmic way to define the micro-
units of analysis of economic geography and economic sociology. To test whether Italian 
industrial agglomerations follow a power law, I checked whether the logarithm of firm rank 
against the logarithm of firm size is a straight line and applied a linear regression approach to 
the different kinds of agglomerations—see Figure 2. The results are statistically significant (r
= 0.997; p < 0.0001); they show that interconnected agglomerations of firms very strongly fit 
the rank/size power law distribution. 
2This is easy to see: a power law function is given by: 

( )f x kx β−=
by taking the logarithm, we get: 

ln( ( )) ln( ) ln( ) ln( )f x kx k xβ β−= = −
which can be rewritten as: 

( )z y c yβ= −
This equation represents a linear equation where the exponent of the power law equation 
indicates the gradient of the straight line on the loglog graph. 
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logarithmic binning (Newman, 2005). Successive bins are multiplied by a constant 
factor3 in order to increase the probability of including at least a few events. Figure 4 
shows the result. A nearly perfect straight line indicates that the distribution of firms 
in Italian industrial districts is Pareto distributed4. A simple least square regression 
can help determine the degree of fitting to a power law.  
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Figure 2: Distribution of firms in cluster areas (Sforzi-Istat classification) – Linear scale 
 

3The values have to be normalised dividing them by the amplitude of the respective bin.  
4This result confirms and extends results obtained by Axtell (Axtell RL. 2001. Zipf distribution 
of U.S. firm sizes. Science 293: 1818-1820) and previously by Simon (Simon H. 1955. On a 
class of skewed distribution functions. Biometrika 42 (3/4): 425-440) about US firms.  
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We immediately notice a crucial feature of power law distributions: they lack a 
typical scale, that is, there is no value that, as in the case of the normal distribution, 
could be taken to represent the average ‘dimension’ of the phenomenon. In other 
words, power law distributions have no meaningful mean. How is it possible? 
Although one can always calculate a mean, it is a volatile one. This is due to the fact 
that inverse power law distributions are the signature of systems that scale linearly 
(also called fractal systems, see section 4.1). These systems are part of a family of 
distributions named after the French mathematician Cauchy:  

As a result of this linear scaling, the distribution of the average of N identically 
distributed Cauchy variables is the same as the original distribution. Thus, averaging 
Cauchy variables does not improve the estimate…. This is in stark contrast to all 
probability distributions with a finite variance, σ2, for which averaging over N 
variables reduces the uncertainties by a factor N/1 . This nonstandard behavior of 
the Cauchy distribution is a consequence of its weakly decaying “tails” that produce 
too many “ outliers” to lead to stable averages” (Schroeder, 1991): 159). 

Contrary to a normal distribution, where the absence of a long tail makes the first 
two moments of the distribution (mean and variance) stable, in a power law 
distribution the extreme events in the tail cause a significant change in the mean and 
variance. Moreover, mean and variance do not converge even for very large 
distributions.  

 

4 Three classes of power law theories  
 

I think that the great variety of network-related power law phenomena can be 
classified in three classes. These are concerned with:  

 
A. Geometric properties 
Fractal theory has been the first to demonstrate the versatility and ubiquity of 

power laws and to build a rigorous mathematical framework about them. The impact 
of fractals has been profound although its progress has been slow. Fractals have 
been demonstrated to underpin chaos theory and chaotic attractors, provide a 
rigorous and more realistic theory about financial markets, and give new insights in 
virtually every field of knowledge, including the arts. Though the theory of fractals, at 
least formally, is not directly concerned with networks, it is nonetheless very useful in 
order to understand network’s properties and dynamics, and has to be incorporated 
into this classification. 
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B. Spatial or structural properties of systems 
We have two sets of theories: the former groups theories and models that study 

structural and/or spatial properties of networks assuming as unit of analysis either 
nodes or links. The rank-size rule focuses on nodes, which can be cities (density of 
population in a country), words (frequency in languages), profit of firms (production 
of wealth), etc. The latter group of models examines the network’s connectivity 
pattern and derives generic features of networks from their connectivity topology. 
The two major models in this subcategory are the Scale-Free Networks theory by 
Barabasi and colleagues (Barabási, 2002; Barabási et al., 1999) and the Small 
World theory (Watts, 2003; Watts et al., 1998).  

 
C. Temporal and evolutionary properties 
This group covers theories that describe network’s dynamic. In this case, a power 

law emerges in the rate of change of some behavioural properties of a natural/social 
system, subjected to a perturbation of some kind. Whereas the class B focuses on 
the type of distribution of the network-forming elements (nodes or links), this class 
analyses network’s emergent collective behaviour. Classical examples are Bak and 
Chen’s self-organised criticality (Bak, 1996; Bak et al., 1988) and phase transition 
models in physics. In both cases the emergence of a power law is due to a form of 
critical behaviour. However, in SOC the system evolves spontaneously towards the 
critical threshold, whereas in phase transition models some parameters must be 
externally fine-tuned to achieve criticality.  

 

4.1 Fractals  
 

Fractal geometry was developed by Mandelbrot (Mandelbrot, 1975) to make 
sense of the rough, recursive and irregular shapes of most natural objects, from 
cauliflowers to coastlines, trees, and galaxies. As Mandelbrot (Mandelbrot, 1975): 1) 
writes: “Clouds are not spheres, mountains are not cones, coastlines are not circles, 
and bark is not smooth, nor does lightning travel in a straight line.” The coasts of 
England or Norway exemplify fractality: the length of the coast profile depends with 
inverse linear proportionality on the length of the ruler—i.e., the smaller the ruler, the 
longer the coast. The length of coast is indefinite although the area within the curve 
is finite. A fractal (Mandelbrot et al., 2004): 118) is: “a pattern or shape whose parts 
echo the whole.” Fractals are self-similar objects. As for power laws, some of the 
original ideas regarding fractals go back to the 19th century. Fractals were 
controversial from the very beginning. Charles Hermite commented that 
mathematicians should be “turning away in fear and horror from this lamentable 
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plague of fucntions with no derivatives” (Schroeder, 1991)   
Fractals are not idle mathematical curiosities. Fractals and power laws are found 

from atoms (~1010 meters) to galactic megaparsecs (~1022 m)—across a range of 32 
orders of magnitudes (Baryshev et al., 2002). In biology, West and Brown (West et 
al., 2004) demonstrate an allometric power law relationship between the mass and 
metabolism of virtually any organism and its components—based on fractal 
geometry of distribution of resources—across an astounding 27 orders of 
magnitude. Self-similarity is key to a fundamental property of fractals and power 
laws: linear scalability. Power law systems do not exhibit a characteristic scale and 
consequently enjoy some peculiar statistical properties.  

 

4.2 Spatio-structural properties of systems: the new science of 
networks  

 

This category groups spatio-structural properties of networks, assuming as unit of 
analysis either nodes or links. I mention two: (1) rank-size rules focusing on nodes, 
which can be cities (size of population), words (frequency in languages), profits of 
firms (production of wealth), etc.; and (2) connectivity patterns that derive generic 
features of networks from their connectivity topology. 

The legendary Hungarian mathematician Paul Erdos, in introducing random 
network theory, assumed links are randomly distributed across nodes and form a 
bell-shaped distribution, wherein most nodes have a typical number of links with the 
frequency of remaining nodes rapidly decreasing on either side of the maximum. 
Watts and Strogatz (Watts et al., 1998) show, instead, that many real networks 
follow the small world phenomenon, whereby society is visualized as consisting of 
weakly connected clusters, each having highly interconnected members within. This 
structure allows cohesiveness (high clustering coefficient) and speed/spread of 
information (low path length) across the whole network.  

In their initial small world model, Watts and Strogatz also assume that links are 
Gaussian distributed. Barabási and colleagues (Barabási, 2002), however, studying 
the world wide web, find that the structure of the Web shows a power law 
distribution, where most nodes have only a few links and a tiny minority—the hubs—
are disproportionately very highly connected. The system is scale-free, that is, no 
node can be taken to represent the scale of the system. Defined as Scale-free 
Networks (SFNs), the relative distribution shows infinite variance and the absence of 
a stable mean. It turns out that small world networks are scale-free and follow power 
laws (Song, Shlomo, and Makse, 2005). SFNs appear in fields as disparate as 
epidemiology, metabolism of cells, Internet, and networks of sexual contacts 
(Barabási, 2002).  
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4.3 Self-organized criticality  
 

Self-organized criticality describes the dynamic behaviour of a network, not the 
distribution of its parts as in the previous case. In this category, a power law 
characterizes the nature of the behavioral properties of a system subjected to a 
perturbation of some kind. Whereas the former category focuses on the type of 
distribution of the network-forming elements (nodes and links), this one analyses a 
network’s emergent collective behavior. Classical examples are Bak’s (1996) Self-
Organized Criticality (SOC) and phase transition models in physics. In both cases 
the emergence of a power law is due to a state of critical connectivity. However, in 
SOC the system evolves spontaneously towards the critical threshold, whereas in 
phase transition models the order parameters must be fine-tuned by an external 
agent (i.e., energy source) to achieve criticality. 

This group of models is symbolized by Bak’s (Bak, 1996) sandpile experiments. A 
sandpile subjected to an infinitesimal external perturbation (such as adding a single 
sand grain) evolves toward a critical state, characterized by a critical slope, whereby 
any additional perturbation induces a systemic reaction that can span any order of 
magnitude, with a frequency distribution expressed by a power law. This behavior is 
counter-intuitive. We generally assume a linear relationship between perturbation 
size and system’s reaction, i.e., small causes yield small effects. This is true before 
SOC is attained. Before criticality, each falling grain has a constant probability of 
displacing an adjacent grain. The probability of an avalanche therefore scales 
exponentially with the number of sand grains. This makes large avalanches highly 
unlikely. Instead, at criticality, a power law distribution is a consequence of the global 
connectivity of the sandpile, which is a result of the accumulating interdependencies 
among the sand grains. In other words, SOC dynamics arise when an emergent 
system of links connects local pockets into a coevolving whole such that small and 
local fluctuations can be amplified to achieve systemic effects. As Bak (Bak, 1996): 
60) writes: “In the critical state, the sandpile is the functional unit, not the grain of 
sand.” Mathematically this means that the behavior of the avalanches obeys a power 
law of the type: F ~ S- α, where F represents avalanche frequency with size S.

SOC is very common in nature (Buchanan, 2000). From the dynamics of 
earthquakes, the succession of booms and busts in economic cycles (Krugman, 
1996), to the dynamics of supply chains (Scheinkman et al., 1994), there seems to 
be a common pattern across disparate fields. A few implications follow. First, the 
fact that a self-critical system spontaneously tunes itself towards a self-critical state 
(Bak et al., 1991; Kauffman, 1995), where “…the system organizes itself towards the 
critical point where single events have the widest possible range of effects” (Cilliers, 
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1998): 97), makes reductionism inappropriate for the study of SOC. Second, 
extreme events ceases to be the outlyers of the Gaussian distribution, which we are 
safe to ignore, but become instead the necessary outcomes of the system’s 
connectionism. Interdependence generates outcomes that depend on the 
amplification provided by the occurrences of joint probabilities For instance, the 
conventional explanation regarding mass extinctions (e.g., dinosaurs at the end of 
Cretaceous Period) is imputed to exogenous events (asteroid or eruptions or both). 
Instead, according to SOC, internal causes may have been progressively amplified 
until a catastrophic chain reaction took place (Gould, 2000); (Raup, 1999): 217–
218). Fundamentally, self-organized criticality (SOC) is a theory about endogenously 
initiated nonlinear change in systems.  

 

5. Indipendence versus interdipendence  
 

So far our separation of power law phenomena into geometric, spatio-structural, 
dynamic phenomena begs the question whether the different phenomena described 
by power laws share a common property. Mandelbrot (Mandelbrot, 1963); quoted in 
2004: 170) writes:  

…The cotton story shows the strange liaison among different branches of the 
economy, and between economics and nature. That cotton prices should vary the 
way income does; that income variations should look like Swedish fire-insurance 
claims; that these, in turn, are in the same mathematical family as formulae 
describing the way we speak, or how earthquakes happen—this is, truly, the great 
mystery of all.

Simon (Simon, 1955): 425) pointed to a common probability mechanism:  
[The power law’s] appearance is so frequent, and the phenomena in which it 

appears so diverse, that one is led to the conjecture that if these phenomena have 
any property in common, it can only be a similarity in the structure of the underlying 
probability mechanism.

Others also argue that the appearance of power laws points to common 
underlying dynamic and coevolutionary mechanisms (Bak, 1996; Lee et al., 1998; 
Shin et al.; West et al., 2004). Stanley, a founder of econophysics, writes: 

If the same empirical laws hold for the growth dynamics of both countries and 
firms, then a common mechanism might describe both processes. (Stanley et al.,
1996): 3277)  

Whatever your stance on this point, organizations can make use of the 
commonality. In fact:  

“relatively simple patterns, known as power laws and observed in disparate 
settings from astrophysics to evolutionary biology, as well as in human society, 
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suggest strategies by which well-managed organizations can deal with uncertainty 
and navigate the discontinuities of contemporary business” (Buchanan, 2004) 

In a separate paper (Andriani et al., 2005) Bill McKelvey and I advance the 
hypothesis that the explanation for the predominance of power laws is 
interdependence among agents (data points) that—with some probability—leads to 
fat tails and consequent power law effects. The long tail effects are more evident in 
seismology, social networks, economics and finance, but plenty of evidence 
indicates they appear everywhere including organizations.  

 

5.1 Averages instead of tails  
 
Linear thinking is engrained in our mentality. Scientific and mathematical models 

are based on the concepts of equilibrium and linearity5, which allows efficient 
causality to operate, equations to be solved and forecasting modeling to be 
elaborated. Economics, for instance, is almost theistic in the (scarcely verified) 
hypothesis that economic phenomena trend toward (general) equilibrium. The 
operational arm of science and economics, calculus, is limited to continuity. One of 
the implications of treating reality as mainly continuous and linear is the ostracisation 
of innovation, treated as a black box. Innovation with its content of creative 
destruction (Schumpeter, 1942) is seen as a disturbance to the economic system, 
inevitably followed by the restoration of equilibrium. Given the dominance of linear 
thinking and economics, it is no surprise therefore that as economists and math 
modelers have more and more come to dominate business and management 
studies and practices, equilibrium models and linear thinking have also come to 
dominate over nonlinear phenomena in organisational studies.   

What is the relevance of this philosophical digression for our power law 
argument? By focusing on systems in equilibrium, we implicitly accept that the 
number of possible states that our system can attain is limited and that the search 
time following the onset of instability is short compared to the ‘equilibrium’ time. For 
this to be true, the system must be internally weakly connected6 so that many 
internal events can effectively be considered as independent. Weak connectivity 
plays well with linearity as it allows interdependencies to be treated as second order 
effects (by means of perturbation analysis, see for instance (West et al., 1995)) and 
 
5Linearity means two things: 1)proportionality between cause and effect and 2)superposition, 
that is that the dynamic of a system can be reconstructed by summing up the effects of the 
single causes acting on the single components (Nicolis Prigogine).  
6Otherwise, following Kauffman’s NK landscape, the system would collapse into a complexity 
catastrophy and would incessantly circle into its state phase with a very low probability of 
finding attractors (Kauffman, 1995). 
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with Gaussian statistics, as it excludes, ipso facto, the amplification mechanisms 
that give rise to the ‘fat tails’ of the Paretian distribution. If we take 100 companies 
belonging to the same sector and approximately of the same size and we assume 
independence, and plot a variable, say profit, we expect (according to linear 
thinking) to find that most events will pack around the most common one, the 
average, in a rapidly decaying distribution that follows a bell (or Gaussian) curve. A 
bell shaped distribution is the most studied statistical distribution and it underlies 
much of our understanding of the natural and social world. However the crux of the 
point above is independence of events. In real life, those companies will benchmark 
against each other, imitate those perceived as successful, exchange information, 
organize cartels, organize mergers and undergo acquisitions, compete for limited 
resources, etc. In a word, they are interdependent and not independent!  The 
statistical distribution governing interconnected situation doesn’t give rise to a bell 
distribution but instead to a power law distribution.  

The two distributions are radically different. The main feature of the normal 
distribution can be entirely characterized by its mean and variance. A power law 
instead doesn’t even show a proper mean let alone a variance, which is infinite 
(Newman, 2005).  A power law therefore has no value that can be assumed to 
represent the typical features of the distribution (it is therefore defined as scale-free)
and no standard deviations.  

There are two major implications for this: 
1. The dream of social science of building robust frameworks that allow social 

scientists to predict the evolution of social phenomena get shattered by the 
absence of statistical regularities in phenomena dominated by persistent 
interconnectivity. In fact, absent mean and standard deviation, the very basis 
for probabilistic assessment of outcomes is denied. This point reflects the 
more pervasive and structural issue of nonlinearity and emergence in complex 
systems. Linearity assumes the divisibility of systems into modules whose 
dynamic can be inquired irrespective of the context. This point gives rise to the 
independence assumption, which, we have seen playing a key role in 
generating bell shaped distribution.  

2. Power law tails decay more slowly than those of normal distributions. These 
“fat” tails affect systems’ behaviors in significant ways. Extreme events, that in 
a normal distribution world could be safely ignored, are not only more common 
than expected but also of vastly larger magnitude and consequential. For 
instance  financial market drops of 10% in one day should occur once every 
500 years according to a normal distribution. They instead tend to occur once 
every five years (Mandelbrot et al., 2004).  
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5.2 Statistics: obscuring rather than clarifying?  

 

A power law world is dominated by extreme events that we are safe to ignore in a 
Gaussian-world. In fact, the ‘fat’ tails of power law distributions make large extreme 
events orders of magnitude more likely. In a ‘normal’ world, where distributions show 
a typical scale, extreme events are so different from the type and so rare that they 
don’t significantly influence either the mean or the variance. Hence ignoring them is 
a safe strategy. However, insurance companies that used normal distributions to 
assess likelihood of extreme events got their fingers burned. The devastations 
followed flooding in Central Europe in 2003, the multiple yearly recurring cyclones 
hitting the American coasts, the multiple earthquakes of scale 7 and higher, etc. 
indicate that we are not in a ‘normal’ world. On the contrary, the action seems to be 
in the tails. In the movie industry, almost all the profit come from the blockbusters, 
that is the extreme events, with the majority of the movies contributing next to 
nothing to profitability and revenues (De Vany, 2004). If this is true, normal 
distribution statistics is obscuring the matter rather than clarifying it. The practice of 
looking for the mean, that gives an indication about the scale of the phenomenon, 
the reliance on variance to build confidence interval and therefore assess likelihood 
of single event; and even more the practice of excluding outlying events become 
irrelevant or openly wrong in a power law-world. We need a statistics that basically 
concentrate our attention on the ‘fat’ tails of the distribution. This statistics is the 
object of the following section.  

 

5.3 Different kind of statistics?  
 
A non-Gaussian world demands a statistics that takes into account path-

dependency, nonlinearities, emergent properties of systems and the dynamics of 
multiple punctuated equilibria. The assumption of independence of events, which 
underlies the Gaussian world and the reductionist approach, leads to the wrong tools 
and conclusion when dealing with connectionist dynamics. The demise of 
reductionism causes the demise of predictability of single events. Given mean and 
variance, Gaussian statistics allows the prediction of the occurrence probability of 
the next event. Instead where extreme events dominate and variability is infinite, the 
maximum statistics can do is to indicate the shape of the distribution, that is, the 
general attractor toward and around which the events will tend to self-organize. This 
attractor is a universal one, which means that the connectionist dynamics underlying 
power laws causes the aggregate of events to follow a double log linear graph. The 
universality of the graph is confirmed by the fact that the relationships among events 
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hold across time and space. Approximately the same graph with a very similar slope 
holds for American cities across 200 years (see Figure 1)and (Auerbach, 1913; 
Krugman, 1996)). Power laws for cities are found in other nations. Again a power 
law (or Paretian) distribution is found in the movie industry in every country in which 
research has been carried out (De Vany, 2004). This doesn’t mean that the same 
features apply in different cultural contexts but that for instance the share of profit of 
blockbusters to unsuccessful movies is the same.  

What are the main features of a generalized power law based statistics: 
1. The mode (most frequent event) is smaller than the median (central point) 

which is smaller than the mean. Contrarily to the Gaussian, a power law 
distribution mean is strongly influenced by large extreme events. 

2. Universality: the dynamics of connectionist phenomena lead to a universal 
power law distribution that is valid for the same variable across time and 
space. A power law distribution can therefore be considered as a universal 
attractor from which the dynamics of phenomena are attracted. 

3. Scale-free: in general a power law distribution shows no typical scale (no 
mean). As De Vany (De Vany, 2004: 258) writes: “in this world nothing is 
“typical” and every movie is unique”. 

4. Infinite variability: the variance of the distribution is very large (approaching 
infinity). This means that the use of variance for forecasting leads to a 
probability distribution as wide as the original distribution   

5. “Nobody knows” principle: the prediction of single events is meaningless. 
Events are to be intended as probability distribution. Prediction is possible 
only at the level of the aggregate of events.  

6. Cascade dynamics: the power law results from a generalized self-organized 
criticality dynamics. As an event derives from the propagation of a signal 
under conditions of positive feedback, the logic of preferential attachment 
holds. For instance, in the case of information based cascades, success 
breed success. 

7. A business of extremes: the important part of the statistics is in the tails. 
Extreme events are more frequent and disproportionate is size than in a 
Gaussian dominated world.   

8. Self-similarity: the shape of the distribution looks the same at any scale. What 
this suggests is that common dynamical patters are in action at different 
levels. Whether we take the whole series of events or sample a part of it, we 
find the same pattern of large discontinuous events irregularly casted against 
a background of finer perturbations. In other words, we need a fractal 
statistics. 

9. Linear amplification: fat tails result from the amplification of simple causes 
that could evolve to generate events of any size. The major difference 
between a Gaussian and a power law distribution is that the former ‘tends’ to 
quench events (in fact the assumption of independence kills at its root the 
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positive feedback that gives rise to large events) whereas the latter to 
‘amplify’ them.  

 

6. Conclusions  
 

I’ve tried in this essay to do two things: first to credit Pareto for the discovery of 
what has become one of the greatest successes of complexity theory, that is, the 
power law (or Paretian) distribution. Pareto has opened a direction for research that 
has expanded in virtually every field of knowledge and contributed to change our 
view of the world. The second part of this essay looks at (albeit in a very concise 
way) the impact that the Paretian distribution has had on the way we conceptualise 
and carry out research on dynamic phenomena, especially with regards to the type 
of statistics that is appropriate to use.  

In conclusion, Vilfredo Pareto’s merit is to have started, probably unwillingly, that 
trend of research that has demonstrated that behind the apparent randomness or 
stocasticity of real world phenomena there is a kind of hidden order, reflected by the 
ubiquity of the Paretian distribution.  
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